How does cyclic electron flow alleviate photoinhibition in Arabidopsis?
نویسندگان
چکیده
Cyclic electron flow (CEF) around photosystem I has a role in avoiding photoinhibition of photosystem II (PSII), which occurs under conditions in which the rate of photodamage to PSII exceeds the rate of its repair. However, the molecular mechanism underlying how CEF contributes to photoprotection is not yet well understood. We examined the effect of impairment of CEF and thermal energy dissipation (qE) on photoinhibition using CEF (pgr5) and qE (npq1 and npq4) mutants of Arabidopsis (Arabidopsis thaliana) exposed to strong light. Impairment of CEF by mutation of pgr5 suppressed qE and accelerated photoinhibition. We found that impairment of qE, by mutations of pgr5, npq1, and npq4, caused inhibition of the repair of photodamaged PSII at the step of the de novo synthesis of the D1 protein. In the presence of the chloroplast protein synthesis inhibitor chloramphenicol, impairment of CEF, but not impairment of qE, accelerated photoinhibition, and a similar effect was obtained when leaves were infiltrated with the protonophore nigericin. These results suggest that CEF-dependent generation of DeltapH across the thylakoid membrane helps to alleviate photoinhibition by at least two different photoprotection mechanisms: one is linked to qE generation and prevents the inhibition of the repair of photodamaged PSII at the step of protein synthesis, and the other is independent of qE and suppresses photodamage to PSII.
منابع مشابه
PGR5 Is Involved in Cyclic Electron Flow around Photosystem I and Is Essential for Photoprotection in Arabidopsis
During photosynthesis, plants must control the utilization of light energy in order to avoid photoinhibition. We isolated an Arabidopsis mutant, pgr5 (proton gradient regulation), in which downregulation of photosystem II photochemistry in response to intense light was impaired. PGR5 encodes a novel thylakoid membrane protein that is involved in the transfer of electrons from ferredoxin to plas...
متن کاملThe response of cyclic electron flow around photosystem I to changes in photorespiration and nitrate assimilation.
Photosynthesis captures light energy to produce ATP and NADPH. These molecules are consumed in the conversion of CO2 to sugar, photorespiration, and NO3(-) assimilation. The production and consumption of ATP and NADPH must be balanced to prevent photoinhibition or photodamage. This balancing may occur via cyclic electron flow around photosystem I (CEF), which increases ATP/NADPH production duri...
متن کاملRegulation of cyclic and linear electron flow in higher plants.
Cyclic electron flow is increasingly recognized as being essential in plant growth, generating a pH gradient across thylakoid membrane (ΔpH) that contributes to ATP synthesis and triggers the protective process of nonphotochemical quenching (NPQ) under stress conditions. Here, we report experiments demonstrating the importance of that ΔpH in protecting plants from stress and relating to the reg...
متن کاملThioredoxin m4 controls photosynthetic alternative electron pathways in Arabidopsis.
In addition to the linear electron flow, a cyclic electron flow (CEF) around photosystem I occurs in chloroplasts. In CEF, electrons flow back from the donor site of photosystem I to the plastoquinone pool via two main routes: one that involves the Proton Gradient Regulation5 (PGR5)/PGRL1 complex (PGR) and one that is dependent of the NADH dehydrogenase-like complex. While the importance of CEF...
متن کاملPhotoinhibition and light-induced cyclic electron transport in ndhB(-) and psaE(-) mutants of Synechocystis sp. PCC 6803.
The ndhB(-) and psaE(-) mutants of the cyanobacterium Synechocystis sp. PCC 6803 are partly deficient in PSI-driven cyclic electron transport. We compared photoinhibition in these mutants to the wild type to test the hypothesis that PSI cyclic electron transport protects against photoinhibition. Photoinhibitory treatment greatly accelerated PSI cyclic electron transport in the wild type and als...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 149 3 شماره
صفحات -
تاریخ انتشار 2009